MATH 5061 Solution to Problem Set 4¹

1. Prove that the upper half plane $\mathbb{R}^2_+ := \{(x, y) \in \mathbb{R}^2 : y > 0\}$ with the Riemannian metric $g = \frac{1}{y^2}(dx^2 + dy^2)$ is complete.

Solution:

We will show \mathbb{R}^2_+ is geodesically complete w.r.t $g = \frac{1}{y^2}(dx^2 + dy^2)$. That is, any geodesic $\gamma_0(t) : (-\varepsilon, \varepsilon) \to \mathbb{R}^2_+$ can be extended infinity at both side.

First, we note $\gamma(t) = (0, t)$ is a geodesic. Indeed, for any new curve $c(t) : [0, 1] \to \mathbb{R}^2_+$ jointing (0, a), (0, b) with , we have

$$\begin{aligned} \operatorname{Length}(c) &= \int_0^1 |c'(t)| \, dt = \int_0^1 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \frac{dt}{y} \\ &\geq \int_0^1 \left|\frac{dy}{dt}\right| \frac{dt}{y} \ge \int_0^1 \frac{dy}{dt} \frac{dt}{y} = \int_a^b \frac{dy}{y} = \operatorname{Length}(\gamma|_{[a,b]}) \end{aligned}$$

So by the minimizing properties of geodesics, we know $\gamma(t)$ is indeed a geodesic.

Moreover, γ can be extended to infinity at both side by noting

$$\int_{1}^{\infty} |\gamma'(t)| dt = \int_{1}^{\infty} \frac{dt}{t} = +\infty$$
$$\int_{0}^{1} |\gamma'(t)| dt = \int_{0}^{1} \frac{dt}{t} = +\infty$$

Now, we can try to convert any other geodesics to this standard y-axis.

Note the linear fractional transformation $z \to \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}, ad - bc > 0$ is a isometry of \mathbb{R}^2_+ . Indeed, suppose $g = \frac{1}{|\operatorname{Im} z|^2} dz d\overline{z}$ and $w = \frac{az+b}{cz+d}$, then

$$\frac{1}{\left|\mathrm{Im}w\right|^{2}}dwd\overline{w} = \frac{\left|cz+d\right|^{4}}{\left|ad-bc\right|^{2}\left|\mathrm{Im}z\right|^{2}} \left|\frac{(ad-bc)dz}{(cz+d)^{2}}\right|^{2} = \frac{1}{\left|\mathrm{Im}z\right|^{2}}\left|dz\right|^{2}.$$

Hence, for any geodesic γ_0 above, we can use the isometric transformation $\varphi(z) = \frac{z - \operatorname{Re}\gamma_0(0)}{\operatorname{Im}\gamma_0(0)}$ to get $\tilde{\gamma}_0 := \varphi \circ \gamma_0$ is a geodesic such that $\varphi \circ \gamma_0(0) = (0, 1)$. Without loss of generality, we assume γ_0 is parametric by arc length.

Now let's consider the isometric transformation $\psi(z) = \frac{z-a}{1+az}$ for $a \in \mathbb{R}$ decided later on. Clearly $\psi(i) = i$, hence $\psi \circ \tilde{\gamma}_0(0) = (0, 1)$. Now let's calculate the differential of ψ at $z_0 := i = (0, 1)$ and we can get

$$d\psi_{z_0}(w) = \frac{w(1+az_0) - (z_0 - a)aw}{(1+az_0)^2} = \frac{1-ai}{1+ai}w.$$

¹Last revised on April 8, 2024

So $d\psi_{z_0}$ acts on $T_{z_0}\mathbb{R}^n_+$ like the rotation. If $\tilde{\gamma}'_0(0) \neq (0,1)$, we can always find $a \in \mathbb{R}$ such that $\frac{1-ai}{1+ai} = (\tilde{\gamma}'_0(0))^{-1}$ as a complex number by solving a simple equation. Hence the geodesic $\bar{\gamma}$ defined by $\psi \circ \tilde{\gamma}_0$ will pass through (0,1) and $\bar{\gamma}'(0) = (0,1)$. By the uniqueness of geodesic we know $\bar{\gamma}$ will coincide with γ after reparameterization. Hence $\bar{\gamma}$ and γ_0 can be extended to infinity at both side.

So by Hopf-Rinow theorem, we know \mathbb{R}^2_+ is complete.

2. Let (M^n, g) be a complete Riemannian manifold. Suppose there exists constants a > 0 and $c \ge 0$ such that for all pairs of points p, q in M, and for all minimizing geodesics $\gamma(s)$, which is parametrized by arc length, joining p to q, we have

$$\operatorname{Ric}(\gamma'(s), \gamma'(s)) \ge a + \frac{df}{ds}$$
 along γ ,

where f is a functions of s such that $|f(s)| \leq c$ along γ . Prove that (M^n, g) is compact. Solution:

Let $\gamma : [0, l] \to (M^n, g)$ be the minimizing geodesic jointing $p, q \in M$ parametrized by arc length where $l = \operatorname{dist}(p, q)$. We will prove $l \leq l_0 := \max\left\{\frac{8c\pi}{a}, \sqrt{\frac{2(n-1)\pi^2}{a}}\right\}$ by contradiction.

Suppose $l > l_0$, we will fix a parallel orthonormal basis $\{e_1(t), \dots, e_{n-1}(t), \gamma'(t)\}$ along γ .

We define $V_i(t) := (\sin(\frac{\pi t}{l}))e_i(t)$, so $V_i(0) = V_i(l) = 0$. We can calculate the second variation of energy to get

$$E_{i}''(0) = -\int_{0}^{l} \langle V_{i}'' + R(\gamma', V_{i})\gamma', V_{i} \rangle dt = \int_{0}^{l} \sin^{2}(\frac{\pi t}{l}) \left(\frac{\pi^{2}}{l^{2}} - \langle R(\gamma', e_{i})\gamma', e_{i} \rangle\right) dt$$

After taking sum over $i = 1, \dots, n-1$, we have

$$\begin{split} \sum_{i=1}^{n-1} E_i''(0) &= \int_0^l \sin^2\left(\frac{\pi t}{l}\right) \left((n-1)\frac{\pi^2}{l^2} - \operatorname{Ric}(\gamma',\gamma')\right) dt \\ &\leq \int_0^l \sin^2\left(\frac{\pi t}{l}\right) \left((n-1)\frac{\pi^2}{l^2} - a - f'(t)\right) dt \\ &< \int_0^l - \sin^2\left(\frac{\pi t}{l}\right) \frac{a}{2} dt + \int_0^l 2\sin\left(\frac{\pi t}{l}\right) \cos\left(\frac{\pi t}{l}\right) \frac{\pi}{l} f(t) dt \\ &\leq -\frac{al}{4} + 2\pi c < 0 \end{split}$$

This $E_i''(0) < 0$ for some *i*, which contradicts γ being minimizing.

Hence by Hopf-Rinow theorem, we know M is compact since it has finite diameter.

3. Let (M^n, g) be a complete Riemannian manifold with non-positive sectional curvature, i.e. $K \leq 0$. Show that any homotopy class of paths with fixed end points p and q in M contains a unique geodesic.

Solution:

If $K \leq 0$, then $\exp_p : T_p M \to M$ is a covering map by Cartan-Hadamard Theorem. Let $\exp_p^*(g)$ be the metric on $T_p M$ to make \exp_p be a local isometry.

For any path c jointing p, q, we can get a lifting path \tilde{c} inside $T_p M$ jointing 0 and some $\tilde{q} \in \exp_p^{-1}(q)$. Note that there exists a unique geodesic in $T_p M$ jointing $0, \tilde{q}$ giving by $\tilde{\gamma}(t) = t\tilde{q}$ since all the geodesics starting form 0 is the radical rays.

So $\exp_p(\tilde{\gamma})$ will give a geodesic jointing p, q which is homotopic to c. Note for any curves homotopic to c and jointing p, q can be lifted to a curve jointing $0, \tilde{q}$, we know if there is another geodesic jointing p, q will give another lifting geodesic jointing $0, \tilde{q}$, hence it should coincide with $\tilde{\gamma}$. Hence the uniqueness of geodesic jointing p, q has be proved.

4. Show that any even dimensional complete manifold with constant positive sectional curvature is isometric to either \mathbb{S}^{2n} or \mathbb{RP}^{2n} , equipped with the canonical round metric.

Solution:

Let M be the even dimensional complete manifold with constant positive sectional curvature. We know M is compact by Bonnet-Myers theorem.

By Synge Theorem, we know if M is orientable, then M is simply connected. So by classification of spaces of constant sectional curvature, we know M isometry to the standard sphere \mathbb{S}^{2n} .

If M is non-orientable, we consider \tilde{M} , the orientation covering space of M. Now by above theorem, we know \tilde{M} isometric to \mathbb{S}^{2n} . So M will be a quotient space of \mathbb{S}^{2n} under a isometric action $\varphi : \mathbb{S}^{2n} \to \mathbb{S}^{2n}$ that $\varphi \circ \varphi = \mathrm{Id}_{\mathbb{S}^{2n}}$ and φ reverses the orientation on \mathbb{S}^{2n} . We want to show φ is an antipodal map.

Indeed, we know $\varphi \in O(2n+1)$ by standard argument. (see Ex. 2 in Problem Set 3) Let A be the matrix form of φ . Note $A^2 = I_{2n+1}$, we know the eigenvalues of A can only be 1 or -1. Since the action φ is free (has no fix point), A cannot take 1 to be a eigenvalue. So $A = -I_{2n+1}$ and hence $\varphi(x) = -x$, which is an antipodal map.

Hence M will isometric to the standard \mathbb{RP}^{2n} with the canonical round metric.

5. Using the identification $\mathbb{C}^2 \cong \mathbb{R}^4$, we denote the unit sphere by $\mathbb{S}^3 := \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\}$. Let $h : \mathbb{S}^3 \to \mathbb{S}^3$ be the smooth map given by

$$h(z_1, z_2) = (e^{\frac{2\pi}{q}i} z_1, e^{\frac{2\pi r}{q}i} z_2)$$

where q and r are relatively prime integers with q > 2.

- (a) Show that $G = \{id, h, \dots, h^{q-1}\}$ is a group of isometries of the sphere \mathbb{S}^3 with the standard round metric. Prove that the quotient space \mathbb{S}^3/G is a smooth manifold. This is called a *lens space*.
- (b) Suppose the lens space \mathbb{S}^3/G is equipped with the natural Riemannian metric such that the projection map $\pi : \mathbb{S}^3 \to \mathbb{S}^3/G$ is a local isometry. Show that all the geodesics of \mathbb{S}^3/G are closed but can have different lengths.

Solution:

(a). We can extend h to the action on \mathbb{C}^2 just by

$$h(z_1, z_2) = \left(e^{\frac{2\pi}{q}i}z_1, e^{\frac{2\pi r}{q}i}z_2\right).$$

The standard metric on \mathbb{C}^2 is given by $g = |dz_1|^2 + |dz_2|^2$. Hence the pullback metric under h is given by

$$h^*g = \left| e^{\frac{2\pi}{q}i} dz_1 \right|^2 + \left| e^{\frac{2\pi r}{q}i} dz_2 \right|^2 = \left| dz_1 \right|^2 + \left| dz_2 \right|^2.$$

Hence h and so h^k are isometries of \mathbb{C}^2 . After restriction to \mathbb{S}^3 , we know $G = \{ \text{id}, h, \dots, h^{q-1} \}$ is a group of isometries of \mathbb{S}^3 .

Note that h^k acts on \mathbb{S}^3 is free for $k = 1, \dots, q-1$ since q, r are relatively prime. So the quotient space \mathbb{S}^3/G is a smooth manifold. (*G* is a discrete group acting smoothly, freely, and properly on \mathbb{S}^3 . Properly is easy to see since \mathbb{S}^3 is compact.)

(b). For any $y \in \mathbb{S}^3/G$, we can find a small neighborhood $y \in V_y \subset \mathbb{S}^3/G$ and $x \in U_x \subset \mathbb{S}^3$ such that $x \in \pi^{-1}(y)$ and π is a diffeomorphism between U_x, V_y by the properties of covering map. Now we can define the Riemannian metric in V_y by $(\pi^{-1})^* g_{\mathbb{S}^3}$ where $g_{\mathbb{S}^3}$ is the standard metric on \mathbb{S}^3 .

Now we need to check this is well-defined metric on V_y . For another point $\tilde{x} \in \mathbb{S}^3$ with $\pi(\tilde{x}) = y$, we know there is $k \in \mathbb{Z}$ such that $h^k(x) = \tilde{x}$. So $h^k(U_x)$ is a neighborhood of \tilde{x} such that π is a diffeomorphism between $h^k(U_x), V_y$. Now $(\pi^{-1})^*|_{h^k(U_x)}g_{\mathbb{S}^3}$ will given another definition of metric. But we note $(\pi^{-1})^*(h^k)^*g_{\mathbb{S}^3} = (\pi^{-1})^*g_{\mathbb{S}^3}$ since h is an isometry, we know they give the same definition of metric.

Hence, we have a well-defined metric g_y on V_y . Moreover, we can see the relation $\pi^* g_y = g_{\mathbb{S}^3}|_{\pi^{-1}(V_y)}$. Hence g_{y_1}, g_{y_2} will agree with each other for different y_i and neighborhood on their common area. So we can form a global metric g on \mathbb{S}^3/G such that $\pi^* g = g_{\mathbb{S}^3}$ and moreover, π will be a local isometry. Now, for any geodesic γ in \mathbb{S}^3/G , we can consider its lifting $\tilde{\gamma}$. Clearly $\tilde{\gamma}$ will be a geodesic arc in \mathbb{S}^3 jointing p and q for some $p, q \in \mathbb{S}^3$. Note the geodesic in \mathbb{S}^3 is just a part of great circles, so we can extend $\tilde{\gamma}$ to be a closed geodesic. Hence the geodesic $\pi \circ \tilde{\gamma}$ will extend γ and become a closed geodesic in \mathbb{S}^3/G .

Now let's consider the curves $c(t) = (e^{it}, 0) \in \mathbb{S}^3$. It is a geodesic since it just a big circle on \mathbb{S}^3 . Moreover, $h^k \circ c$ will be the same geodesic upto reparameterization. This actually shows G acts on $\mathbb{S}^1 := \{(e^{it}, 0) : t \in \mathbb{R}\}$ freely and properly. So the after taking quotient, we can get \mathbb{S}^1 covering a closed geodesic in \mathbb{S}^3/G precisely q times. Hence the quotient of c will have length $\frac{2\pi}{q}$ if we don't count multiplicity.

On the other hand, for any closed geodesic $\gamma(t) : [0,1] \to \mathbb{S}^3/G$, we can lift to \mathbb{S}^3 to get a geodesic arc $\tilde{\gamma}$ jointing $p, h^k(p)$ for some $0 \le k \le q-1$. By the local isometry, we know $\pi_* \tilde{\gamma}'(0) = \pi_* \tilde{\gamma}'(1) = \gamma'(0)$. So $h_*^k \tilde{\gamma}'(0) = \tilde{\gamma}'(1)$. This mean $h^k \circ \tilde{\gamma}$ will be a extension of $\tilde{\gamma}$. Let c(t) be the great circle that $\tilde{\gamma}$ lying. If $k \ne 0$, we actually know h will fix the great circle c(t) since k, q are coprime. Same reason above shows the length of γ will be $\frac{2\pi}{q}$ if we do not count multiplicity. So if we consider the geodesic $c(t) = (\cos t, 0, 0, \sin t)$. This time h will map

So if we consider the geodesic $c(t) = (\cos t, 0, 0, \sin t)$. This time h will map c(t) to another geodesic on \mathbb{S}^3 . At least we note $h^k(c(0))$ will be different q points for $k = 0, \dots, q-1$, so $h^k \circ c$ will be q different geodesics. By above we know $\pi \circ c(t)$ cannot have length less than 2π . So we know length of $\pi \circ c(t)$ has length 2π .