MATH 5061 Solution to Problem Set 4^{11}

1. Prove that the upper half plane $\mathbb{R}_{+}^{2}:=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ with the Riemannian metric $g=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)$ is complete.

Solution:

We will show \mathbb{R}_{+}^{2} is geodesically complete w.r.t $g=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)$. That is, any geodesic $\gamma_{0}(t):(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}_{+}^{2}$ can be extended infinity at both side.

First, we note $\gamma(t)=(0, t)$ is a geodesic. Indeed, for any new curve $c(t)$: $[0,1] \rightarrow \mathbb{R}_{+}^{2}$ jointing $(0, a),(0, b)$ with , we have

$$
\begin{aligned}
\operatorname{Length}(c) & =\int_{0}^{1}\left|c^{\prime}(t)\right| d t=\int_{0}^{1} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \frac{d t}{y} \\
& \geq \int_{0}^{1}\left|\frac{d y}{d t}\right| \frac{d t}{y} \geq \int_{0}^{1} \frac{d y}{d t} \frac{d t}{y}=\int_{a}^{b} \frac{d y}{y}=\operatorname{Length}\left(\left.\gamma\right|_{[a, b]}\right)
\end{aligned}
$$

So by the minimizing properties of geodesics, we know $\gamma(t)$ is indeed a geodesic.

Moreover, γ can be extended to infinity at both side by noting

$$
\begin{aligned}
\int_{1}^{\infty}\left|\gamma^{\prime}(t)\right| d t & =\int_{1}^{\infty} \frac{d t}{t}=+\infty \\
\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t & =\int_{0}^{1} \frac{d t}{t}=+\infty
\end{aligned}
$$

Now, we can try to convert any other geodesics to this standard y-axis.
Note the linear fractional transformation $z \rightarrow \frac{a z+b}{c z+d}$ with $a, b, c, d \in \mathbb{R}, a d-$ $b c>0$ is a isometry of \mathbb{R}_{+}^{2}. Indeed, suppose $g=\frac{1}{|\operatorname{Im} z|^{2}} d z d \bar{z}$ and $w=\frac{a z+b}{c z+d}$, then

$$
\frac{1}{|\operatorname{Im} w|^{2}} d w d \bar{w}=\frac{|c z+d|^{4}}{|a d-b c|^{2}|\operatorname{Im} z|^{2}}\left|\frac{(a d-b c) d z}{(c z+d)^{2}}\right|^{2}=\frac{1}{|\operatorname{Im} z|^{2}}|d z|^{2}
$$

Hence, for any geodesic γ_{0} above, we can use the isometric transformation $\varphi(z)=\frac{z-\operatorname{Re} \gamma_{0}(0)}{\operatorname{Im} \gamma_{0}(0)}$ to get $\tilde{\gamma}_{0}:=\varphi \circ \gamma_{0}$ is a geodesic such that $\varphi \circ \gamma_{0}(0)=(0,1)$.

Without loss of generality, we assume γ_{0} is parametric by arc length.
Now let's consider the isometric transformation $\psi(z)=\frac{z-a}{1+a z}$ for $a \in \mathbb{R}$ decided later on. Clearly $\psi(i)=i$, hence $\psi \circ \tilde{\gamma}_{0}(0)=(0,1)$. Now let's calculate the differential of ψ at $z_{0}:=i=(0,1)$ and we can get

$$
d \psi_{z_{0}}(w)=\frac{w\left(1+a z_{0}\right)-\left(z_{0}-a\right) a w}{\left(1+a z_{0}\right)^{2}}=\frac{1-a i}{1+a i} w
$$

[^0]So $d \psi_{z_{0}}$ acts on $T_{z_{0}} \mathbb{R}_{+}^{n}$ like the rotation. If $\tilde{\gamma}_{0}^{\prime}(0) \neq(0,1)$, we can always find $a \in \mathbb{R}$ such that $\frac{1-a i}{1+a i}=\left(\tilde{\gamma}_{0}^{\prime}(0)\right)^{-1}$ as a complex number by solving a simple equation. Hence the geodesic $\bar{\gamma}$ defined by $\psi \circ \tilde{\gamma}_{0}$ will pass through $(0,1)$ and $\bar{\gamma}^{\prime}(0)=(0,1)$. By the uniqueness of geodesic we know $\bar{\gamma}$ will coincide with γ after reparameterization. Hence $\bar{\gamma}$ and γ_{0} can be extended to infinity at both side.

So by Hopf-Rinow theorem, we know \mathbb{R}_{+}^{2} is complete.
2. Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold. Suppose there exists constants $a>0$ and $c \geq 0$ such that for all pairs of points p, q in M, and for all minimizing geodesics $\gamma(s)$, which is parametrized by arc length, joining p to q, we have

$$
\operatorname{Ric}\left(\gamma^{\prime}(s), \gamma^{\prime}(s)\right) \geq a+\frac{d f}{d s} \quad \text { along } \gamma,
$$

where f is a functions of s such that $|f(s)| \leq c$ along γ. Prove that $\left(M^{n}, g\right)$ is compact.

Solution:

Let $\gamma:[0, l] \rightarrow\left(M^{n}, g\right)$ be the minimizing geodesic jointing $p, q \in M$ parametrized by arc length where $l=\operatorname{dist}(p, q)$. We will prove $l \leq l_{0}:=\max \left\{\frac{8 c \pi}{a}, \sqrt{\frac{2(n-1) \pi^{2}}{a}}\right\}$
by contradiction.
Suppose $l>l_{0}$, we will fix a parallel orthonormal basis $\left\{e_{1}(t), \cdots, e_{n-1}(t), \gamma^{\prime}(t)\right\}$ along γ.

We define $V_{i}(t):=\left(\sin \left(\frac{\pi t}{l}\right)\right) e_{i}(t)$, so $V_{i}(0)=V_{i}(l)=0$. We can calculate the second variation of energy to get
$E_{i}^{\prime \prime}(0)=-\int_{0}^{l}\left\langle V_{i}^{\prime \prime}+R\left(\gamma^{\prime}, V_{i}\right) \gamma^{\prime}, V_{i}\right\rangle d t=\int_{0}^{l} \sin ^{2}\left(\frac{\pi t}{l}\right)\left(\frac{\pi^{2}}{l^{2}}-\left\langle R\left(\gamma^{\prime}, e_{i}\right) \gamma^{\prime}, e_{i}\right\rangle\right) d t$
After taking sum over $i=1, \cdots, n-1$, we have

$$
\begin{aligned}
\sum_{i=1}^{n-1} E_{i}^{\prime \prime}(0) & =\int_{0}^{l} \sin ^{2}\left(\frac{\pi t}{l}\right)\left((n-1) \frac{\pi^{2}}{l^{2}}-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right) d t \\
& \leq \int_{0}^{l} \sin ^{2}\left(\frac{\pi t}{l}\right)\left((n-1) \frac{\pi^{2}}{l^{2}}-a-f^{\prime}(t)\right) d t \\
& <\int_{0}^{l}-\sin ^{2}\left(\frac{\pi t}{l}\right) \frac{a}{2} d t+\int_{0}^{l} 2 \sin \left(\frac{\pi t}{l}\right) \cos \left(\frac{\pi t}{l}\right) \frac{\pi}{l} f(t) d t \\
& \leq-\frac{a l}{4}+2 \pi c<0
\end{aligned}
$$

This $E_{i}^{\prime \prime}(0)<0$ for some i, which contradicts γ being minimizing.
Hence by Hopf-Rinow theorem, we know M is compact since it has finite diameter.
3. Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold with non-positive sectional curvature, i.e. $K \leq 0$. Show that any homotopy class of paths with fixed end points p and q in M contains a unique geodesic.

Solution:

If $K \leq 0$, then $\exp _{p}: T_{p} M \rightarrow M$ is a covering map by Cartan-Hadamard Theorem. Let $\exp _{p}^{*}(g)$ be the metric on $T_{p} M$ to make $\exp _{p}$ be a local isometry.

For any path c jointing p, q, we can get a lifting path \tilde{c} inside $T_{p} M$ jointing 0 and some $\tilde{q} \in \exp _{p}^{-1}(q)$. Note that there exists a unique geodesic in $T_{p} M$ jointing $0, \tilde{q}$ giving by $\tilde{\gamma}(t)=t \tilde{q}$ since all the geodesics starting form 0 is the radical rays.

So $\exp _{p}(\tilde{\gamma})$ will give a geodesic jointing p, q which is homotopic to c. Note for any curves homotopic to c and jointing p, q can be lifted to a curve jointing $0, \tilde{q}$, we know if there is another geodesic jointing p, q will give another lifting geodesic jointing $0, \tilde{q}$, hence it should coincide with $\tilde{\gamma}$. Hence the uniqueness of geodesic jointing p, q has be proved.
4. Show that any even dimensional complete manifold with constant positive sectional curvature is isometric to either $\mathbb{S}^{2 n}$ or $\mathbb{R P}^{2 n}$, equipped with the canonical round metric.

Solution:

Let M be the even dimensional complete manifold with constant positive sectional curvature. We know M is compact by Bonnet-Myers theorem.

By Synge Theorem, we know if M is orientable, then M is simply connected. So by classification of spaces of constant sectional curvature, we know M isometry to the standard sphere $\mathbb{S}^{2 n}$.

If M is non-orientable, we consider \tilde{M}, the orientation covering space of M. Now by above theorem, we know \tilde{M} isometric to $\mathbb{S}^{2 n}$. So M will be a quotient space of $\mathbb{S}^{2 n}$ under a isometric action $\varphi: \mathbb{S}^{2 n} \rightarrow \mathbb{S}^{2 n}$ that $\varphi \circ \varphi=\operatorname{Id}_{\mathbb{S}^{2 n}}$ and φ reverses the orientation on $\mathbb{S}^{2 n}$. We want to show φ is an antipodal map.

Indeed, we know $\varphi \in O(2 n+1)$ by standard argument. (see Ex. 2 in Problem Set 3) Let A be the matrix form of φ. Note $A^{2}=I_{2 n+1}$, we know the eigenvalues of A can only be 1 or -1 . Since the action φ is free (has no fix point), A cannot take 1 to be a eigenvalue. So $A=-I_{2 n+1}$ and hence $\varphi(x)=-x$, which is an antipodal map.

Hence M will isometric to the standard $\mathbb{R}^{2 n}$ with the canonical round metric.
5. Using the identification $\mathbb{C}^{2} \cong \mathbb{R}^{4}$, we denote the unit sphere by $\mathbb{S}^{3}:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$. Let $h: \mathbb{S}^{3} \rightarrow \mathbb{S}^{3}$ be the smooth map given by

$$
h\left(z_{1}, z_{2}\right)=\left(e^{\frac{2 \pi}{q} i} z_{1}, e^{\frac{2 \pi r}{q} i} z_{2}\right)
$$

where q and r are relatively prime integers with $q>2$.
(a) Show that $G=\left\{\mathrm{id}, h, \cdots, h^{q-1}\right\}$ is a group of isometries of the sphere \mathbb{S}^{3} with the standard round metric. Prove that the quotient space \mathbb{S}^{3} / G is a smooth manifold. This is called a lens space.
(b) Suppose the lens space \mathbb{S}^{3} / G is equipped with the natural Riemannian metric such that the projection map $\pi: \mathbb{S}^{3} \rightarrow \mathbb{S}^{3} / G$ is a local isometry. Show that all the geodesics of \mathbb{S}^{3} / G are closed but can have different lengths.

Solution:

(a). We can extend h to the action on \mathbb{C}^{2} just by

$$
h\left(z_{1}, z_{2}\right)=\left(e^{\frac{2 \pi}{q} i} z_{1}, e^{\frac{2 \pi r}{q} i} z_{2}\right)
$$

The standard metric on \mathbb{C}^{2} is given by $g=\left|d z_{1}\right|^{2}+\left|d z_{2}\right|^{2}$. Hence the pullback metric under h is given by

$$
h^{*} g=\left|e^{\frac{2 \pi}{q} i} d z_{1}\right|^{2}+\left|e^{\frac{2 \pi r}{q} i} d z_{2}\right|^{2}=\left|d z_{1}\right|^{2}+\left|d z_{2}\right|^{2} .
$$

Hence h and so h^{k} are isometries of \mathbb{C}^{2}. After restriction to \mathbb{S}^{3}, we know $G=\left\{\mathrm{id}, h, \cdots, h^{q-1}\right\}$ is a group of isometries of \mathbb{S}^{3}.

Note that h^{k} acts on \mathbb{S}^{3} is free for $k=1, \cdots, q-1$ since q, r are relatively prime. So the quotient space \mathbb{S}^{3} / G is a smooth manifold. (G is a discrete group acting smoothly, freely, and properly on \mathbb{S}^{3}. Properly is easy to see since \mathbb{S}^{3} is compact.)
(b). For any $y \in \mathbb{S}^{3} / G$, we can find a small neighborhood $y \in V_{y} \subset \mathbb{S}^{3} / G$ and $x \in U_{x} \subset \mathbb{S}^{3}$ such that $x \in \pi^{-1}(y)$ and π is a diffeomorphism between U_{x}, V_{y} by the properties of covering map. Now we can define the Riemannian metric in V_{y} by $\left(\pi^{-1}\right)^{*} g_{\mathbb{S}^{3}}$ where $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3}.

Now we need to check this is well-defined metric on V_{y}. For another point $\tilde{x} \in \mathbb{S}^{3}$ with $\pi(\tilde{x})=y$, we know there is $k \in \mathbb{Z}$ such that $h^{k}(x)=\tilde{x}$. So $h^{k}\left(U_{x}\right)$ is a neighborhood of \tilde{x} such that π is a diffeomorphism between $h^{k}\left(U_{x}\right), V_{y}$. Now $\left.\left(\pi^{-1}\right)^{*}\right|_{h^{k}\left(U_{x}\right)} g_{\mathbb{S}^{3}}$ will given another definition of metric. But we note $\left(\pi^{-1}\right)^{*}\left(h^{k}\right)^{*} g_{\mathbb{S}^{3}}=\left(\pi^{-1}\right)^{*} g_{\mathbb{S}^{3}}$ since h is an isometry, we know they give the same definition of metric.

Hence, we have a well-defined metric g_{y} on V_{y}. Moreover, we can see the relation $\pi^{*} g_{y}=\left.g_{\mathbb{S}^{3}}\right|_{\pi^{-1}\left(V_{y}\right)}$. Hence $g_{y_{1}}, g_{y_{2}}$ will agree with each other for different y_{i} and neighborhood on their common area. So we can form a global metric g on \mathbb{S}^{3} / G such that $\pi^{*} g=g_{\mathbb{S}^{3}}$ and moreover, π will be a local isometry.

Now, for any geodesic γ in \mathbb{S}^{3} / G, we can consider its lifting $\tilde{\gamma}$. Clearly $\tilde{\gamma}$ will be a geodesic arc in \mathbb{S}^{3} jointing p and q for some $p, q \in \mathbb{S}^{3}$. Note the geodesic in \mathbb{S}^{3} is just a part of great circles, so we can extend $\tilde{\gamma}$ to be a closed geodesic. Hence the geodesic $\pi \circ \tilde{\gamma}$ will extend γ and become a closed geodesic in \mathbb{S}^{3} / G.

Now let's consider the curves $c(t)=\left(e^{i t}, 0\right) \in \mathbb{S}^{3}$. It is a geodesic since it just a big circle on \mathbb{S}^{3}. Moreover, $h^{k} \circ c$ will be the same geodesic upto reparameterization. This actually shows G acts on $\mathbb{S}^{1}:=\left\{\left(e^{i t}, 0\right): t \in \mathbb{R}\right\}$ freely and properly. So the after taking quotient, we can get \mathbb{S}^{1} covering a closed geodesic in \mathbb{S}^{3} / G precisely q times. Hence the quotient of c will have length $\frac{2 \pi}{q}$ if we don't count multiplicity.

On the other hand, for any closed geodesic $\gamma(t):[0,1] \rightarrow \mathbb{S}^{3} / G$, we can lift to \mathbb{S}^{3} to get a geodesic arc $\tilde{\gamma}$ jointing $p, h^{k}(p)$ for some $0 \leq k \leq q-1$. By the local isometry, we know $\pi_{*} \tilde{\gamma}^{\prime}(0)=\pi_{*} \tilde{\gamma}^{\prime}(1)=\gamma^{\prime}(0)$. So $h_{*}^{k} \tilde{\gamma}^{\prime}(0)=\tilde{\gamma}^{\prime}(1)$. This mean $h^{k} \circ \tilde{\gamma}$ will be a extension of $\tilde{\gamma}$. Let $c(t)$ be the great circle that $\tilde{\gamma}$ lying. If $k \neq 0$, we actually know h will fix the great circle $c(t)$ since k, q are coprime. Same reason above shows the length of γ will be $\frac{2 \pi}{q}$ if we do not count multiplicity.

So if we consider the geodesic $c(t)=(\cos t, 0,0, \sin t)$. This time h will map $c(t)$ to another geodesic on \mathbb{S}^{3}. At least we note $h^{k}(c(0))$ will be different q points for $k=0, \cdots, q-1$, so $h^{k} \circ c$ will be q different geodesics. By above we know $\pi \circ c(t)$ cannot have length less than 2π. So we know length of $\pi \circ c(t)$ has length 2π.

[^0]: ${ }^{1}$ Last revised on April 8, 2024

